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Smart contract
“Contract를 구현하고, 강제하고, 실행시켜 주는 code”
- 믿지 않는 사용자간의 agreement + coordination
- 블록체인에 복잡한 기능을 제공
 …
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Solidity code
contract MyToken {
    /* This creates an array with all balances */
    mapping (address => uint256) public balanceOf;

    /* Initializes contract with initial supply tokens to the creator of the contract */
    function MyToken( uint256 initialSupply ) public {
    /* (or constructor ( uint256 initialSupply ) public { ) */
        balanceOf[msg.sender] = initialSupply;              // Give the creator all initial tokens
    }

    /* Send coins */
    function transfer(address _to, uint256 _value) public {
        require(balanceOf[msg.sender] >= _value);           // Check if the sender has enough
        require(balanceOf[_to] + _value >= balanceOf[_to]); // Check for overflows
        balanceOf[msg.sender] -= _value;                    // Subtract from the sender
        balanceOf[_to] += _value;                           // Add the same to the recipient
    }

    /* Fallback */
    function () payable {
        ...
    }
}

Storage

Constructor

Function
(Public)

Fallback
function



Smart contracts
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Blockchain에서 
Smart contract란
어떤 의미인가?



Academic Pedigree

from “Bitcoin’s academic pedigree” Narayanan et al.



Smart contracts - category

from “an empirical analysis of smart contracts” Bartoletti et al.

Distribution of transactions by category



Smart contract lifecycle
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Ethereum Virtual Machine
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Smart contract를 위한 execution model
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Ethereum Virtual Machine
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EVM internals - GAS
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EVM assembly code
  PUSH 0
  DUP1 
  PUSH 100
  EXP
  DUP2
  SLOAD
  DUP2
  PUSH FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
  MUL 
  NOT 
  AND 
  SWAP1 
  DUP4 
  PUSH FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
  AND 
  MUL 
  OR 
  SWAP1 
  SSTORE 
  POP 



EVM internals - data
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Volatile,
Byte addressing



EVM internals - data

Func.

Arithmetic

System

Logical

add / mul / div / sub / …

and / not / …

log / codecopy / …

call External call (fixed / precompiled)



EVM instructions - “Yellow paper”ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER BYZANTIUM VERSION e19de80 - 2018-05-2428

0s: Stop and Arithmetic Operations
All arithmetic is modulo 2256 unless otherwise noted. The zero-th power of zero 00 is defined to be one.

Value Mnemonic � ↵ Description

0x00 STOP 0 0 Halts execution.

0x01 ADD 2 1 Addition operation.
µ0

s
[0] ⌘ µ

s
[0] + µ

s
[1]

0x02 MUL 2 1 Multiplication operation.
µ0

s
[0] ⌘ µ

s
[0]⇥ µ

s
[1]

0x03 SUB 2 1 Subtraction operation.
µ0

s
[0] ⌘ µ

s
[0]� µ

s
[1]

0x04 DIV 2 1 Integer division operation.

µ0
s
[0] ⌘

(
0 if µ

s
[1] = 0

bµ
s
[0]÷ µ

s
[1]c otherwise

0x05 SDIV 2 1 Signed integer division operation (truncated).

µ0
s
[0] ⌘

8
><

>:

0 if µ
s
[1] = 0

�2255 if µ
s
[0] = �2255 ^ µ

s
[1] = �1

sgn(µ
s
[0]÷ µ

s
[1])b|µ

s
[0]÷ µ

s
[1]|c otherwise

Where all values are treated as two’s complement signed 256-bit integers.
Note the overflow semantic when �2255 is negated.

0x06 MOD 2 1 Modulo remainder operation.

µ0
s
[0] ⌘

(
0 if µ

s
[1] = 0

µ
s
[0] mod µ

s
[1] otherwise

0x07 SMOD 2 1 Signed modulo remainder operation.

µ0
s
[0] ⌘

(
0 if µ

s
[1] = 0

sgn(µ
s
[0])(|µ

s
[0]| mod |µ

s
[1]|) otherwise

Where all values are treated as two’s complement signed 256-bit integers.

0x08 ADDMOD 3 1 Modulo addition operation.

µ0
s
[0] ⌘

(
0 if µ

s
[2] = 0

(µ
s
[0] + µ

s
[1]) mod µ

s
[2] otherwise

All intermediate calculations of this operation are not subject to the 2256

modulo.

0x09 MULMOD 3 1 Modulo multiplication operation.

µ0
s
[0] ⌘

(
0 if µ

s
[2] = 0

(µ
s
[0]⇥ µ

s
[1]) mod µ

s
[2] otherwise

All intermediate calculations of this operation are not subject to the 2256

modulo.

0x0a EXP 2 1 Exponential operation.
µ0

s
[0] ⌘ µ

s
[0]µs[1]

0x0b SIGNEXTEND 2 1 Extend length of two’s complement signed integer.

8i 2 [0..255] : µ0
s
[0]i ⌘

(
µ

s
[1]t if i 6 t where t = 256� 8(µ

s
[0] + 1)

µ
s
[1]i otherwise

µ
s
[x]i gives the ith bit (counting from zero) of µ

s
[x]

ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER BYZANTIUM VERSION e19de80 - 2018-05-2432

50s: Stack, Memory, Storage and Flow Operations

Value Mnemonic � ↵ Description

0x50 POP 1 0 Remove item from stack.

0x51 MLOAD 1 1 Load word from memory.
µ0

s
[0] ⌘ µ

m
[µ

s
[0] . . . (µ

s
[0] + 31)]

µ0
i ⌘ max(µi, d(µs

[0] + 32)÷ 32e)
The addition in the calculation of µ0

i is not subject to the 2256 modulo.

0x52 MSTORE 2 0 Save word to memory.
µ0

m
[µ

s
[0] . . . (µ

s
[0] + 31)] ⌘ µ

s
[1]

µ0
i ⌘ max(µi, d(µs

[0] + 32)÷ 32e)
The addition in the calculation of µ0

i is not subject to the 2256 modulo.

0x53 MSTORE8 2 0 Save byte to memory.
µ0

m
[µ

s
[0]] ⌘ (µ

s
[1] mod 256)

µ0
i ⌘ max(µi, d(µs

[0] + 1)÷ 32e)
The addition in the calculation of µ0

i is not subject to the 2256 modulo.

0x54 SLOAD 1 1 Load word from storage.
µ0

s
[0] ⌘ �[Ia]s[µs

[0]]

0x55 SSTORE 2 0 Save word to storage.
�0[Ia]s[µs

[0]] ⌘ µ
s
[1]

CSSTORE(�,µ) ⌘
(
Gsset if µ

s
[1] 6= 0 ^ �[Ia]s[µs

[0]] = 0

Gsreset otherwise

A0
r ⌘ Ar +

(
Rsclear if µ

s
[1] = 0 ^ �[Ia]s[µs

[0]] 6= 0

0 otherwise

0x56 JUMP 1 0 Alter the program counter.
JJUMP(µ) ⌘ µ

s
[0]

This has the e↵ect of writing said value to µpc. See section 9.

0x57 JUMPI 2 0 Conditionally alter the program counter.

JJUMPI(µ) ⌘
(
µ

s
[0] if µ

s
[1] 6= 0

µpc + 1 otherwise

This has the e↵ect of writing said value to µpc. See section 9.

0x58 PC 0 1 Get the value of the program counter prior to the increment
corresponding to this instruction.
µ0

s
[0] ⌘ µpc

0x59 MSIZE 0 1 Get the size of active memory in bytes.
µ0

s
[0] ⌘ 32µi

0x5a GAS 0 1 Get the amount of available gas, including the corresponding reduction
for the cost of this instruction.
µ0

s
[0] ⌘ µg

0x5b JUMPDEST 0 0 Mark a valid destination for jumps.
This operation has no e↵ect on machine state during execution.
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Function call handling 
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EVM internals - control
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무엇이 문제인가?



왜 해킹의 대상이 되는가?
- Smart contract는 기본적으로 항상 online + open
- 공격자가 즉각적인 reward를 얻는다. 
- Immutable! 
- 개발자들에게도 생소한 execution model
- Solidity의 abstraction과 실제 EVM과의 mismatch

…

TheDAO
Hack

Parity
MultiSig
Wallet



Smart contract를 작성한다는 것은..

“

from blog.acolyer.org

I want you to write a program that has to run in a concurrent 
environment under Byzantine circumstances where any 
adversary can invoke your program with any arguments of their 
choosing. The environment in which your program executes (and 
hence any direct or indirect environmental dependencies) is also 
under adversary control. If you make a single exploitable mistake 
or oversight in the implementation, or even in the logical design 
of the program, then either you personally or perhaps the users 
of your program could lose a substantial amount of money. 
Where your program will run, there is no legal recourse if things 
go wrong. Oh, and once you release the first version of your 
program, you can never change it. It has be right first time.



취약점? (1) contract Wallet {
(2) mapping(address => uint) private userBalances;
(3) function withdrawBalance() {
(4) uint amountToWithdraw = userBalances[msg.sender];
(5) if (amountToWithdraw > 0) {
(6) msg.sender.call(userBalances[msg.sender]);
(7) userBalances[msg.sender] = 0;
(8) }
(9) }
(9) ...
(10) }

(1) contract AttackerContract {
(2) function () {
(3) Wallet wallet;
(4) wallet.withdrawBalance();
(5) }
(6) }

Fig. 2: Same-function reentrancy attack.

words, only a restricted set of approved participants have the
right to validate transactions. This restricted model provides
better privacy, scalability and fine grained access control over
users and their data. Hence, most private blockchains for
financial institutions and other enterprises follow this model.
Permissioned blockchains do not typically use proof-based
mining to reach a consensus since all the actors are known;
instead they use consensus algorithms such as RAFT [71],
Paxos [65] or PBFT [57] to achieve higher network throughput.

III. MOTIVATION

We describe the broad classes of correctness and fairness
issues in smart contracts. We also describe potential attacks
due to correctness bugs that can be exploited to gain financial
benefits. None of the attacks discussed exploit any blockchain
or Solidity vulnerabilities or compiler implementation bugs.

A. Incorrect Contracts

An incorrect contract uses constructs or programming
paradigms that are not well understood in the context of the
blockchain platform, resulting in a loss of money.

(I) REENTRANCY. A function is reentrant if it can be
interrupted while in the midst of its execution, and safely
re-invoked even before its previous invocations complete
execution. However, Solidity does not support concurrency,
nor are there any interrupts that can halt a function execution.
In spite of these safeguards, Solidity allows multiple parallel
external invocations, which can invoke the same function using
the call family of constructs, i.e., call, callcode and
delegatecall 2. If an externally invokable function does not
correctly manage the global state, it will be susceptible to a
same function reentrancy attack, such as TheDAO bug [1].
Reentrancy attacks can also happen if a contract’s global state
is not correctly managed across invocations of two different
functions that operate upon the same global state. This bug is
called cross-function race condition [8].

While both call and send can be used for transfer of
Ether 3, send cannot cause reentrancy because send limits
the fallback function to 2300 gas, which neither allows any

2Without loss of generality, we use call to refer to these constructs.
3Ether is Ethereum’s virtual currency. Gas is the execution fee for every

operation made on Ethereum.

(1) if(gameHasEnded && !prizePaidOut) {
(2) winner.send(1000); // send a prize to the winner
(3) prizePaidOut = True;
(4) }

Fig. 3: Unchecked send [46].

(1) for (uint i=0; i < investors.length; i++) {
(2) if (investors[i].invested == min investment) {
(2) payout = investors[i].payout;
(3) if (!(investors[i].address.send(payout)))
(4) throw;
(5) investors[i] = newInvestor;
(6) }
(7) }

Fig. 4: Failed send [38].

storage write nor function calls [6], [15]. Oyente [68], however,
considers the CALL bytecode to trigger its check for reentrancy.
Since, both send and call map to the same CALL bytecode,
Oyente generates several false alarms for reentrancy.

ATTACK. Fig. 2 shows a snippet of this vulnerability. The
attacker invokes the fallback function 4 transferring control
to the Wallet’s withdrawBalance function that uses the
call construct to send Ether to the caller, thereby invoking
the attacker’s fallback function again. This repeated invocation
siphons off Ether from the wallet’s balance. This attack can
be mitigated by swapping lines 6 and 7.

(II) UNCHECKED SEND . Since Solidity allows only 2300 gas
upon a send call, a computation-heavy fallback function at
the receiving contract will cause the invoking send to fail.
Contracts that do not correctly handle such failed invocations
and allow modifications to the global state following the failed
send call, may incorrectly lead to loss of Ether [46].

ATTACK. Consider the example in Fig. 3. The send method
can fail, in which case the winner does not get the money, but
prizePaidOut is set to True. Thus, the condition in line 1 is
always False and the real winner can never claim the prize.

(III) FAILED SEND . Best practices [16] suggest executing a
throw upon a failed send, in order to revert the transaction.
However, this paradigm can also put contracts at risk.

ATTACK. Consider Fig. 4, which describes a DAO that has
a certain number of investors, and is at full capacity. If a
new investor comes along and offers more money than the
current smallest investor, the DAO will pay the dividend to
the smallest, and put the new one in, increasing its capital
stake. However, an adversarial wallet with a fallback function
that takes more than 2300 gas to run, can lock this function
by merely investing enough to become the smallest investor.
When the adversarial wallet is next due to be booted off,
the contract will fail while returning the money and throw,
reverting all changes. This causes the wallet to still be a part
of the investors, thereby causing loss of money to the DAO.

(IV) INTEGER OVERFLOW/UNDERFLOW. Smart contracts
primarily operate upon arithmetic operations, such as iterating
over an array or computing balance amounts to send to a
participant. However, since Solidity is strongly typed, implicit
extending of signed or unsigned integers (e.g., from 8 byte
int to 16 byte int) to store the result is not allowed,

4An anonymous function which is invoked if no matching method is found.

3

Re-
entrancy

1. 조건을 확인하고
2. state를 변경하고 
3. action

from “ZEUS: Analyzing Safety of Smart Contracts” Kalra et al.



(1) contract Wallet {
(2) mapping(address => uint) private userBalances;
(3) function withdrawBalance() {
(4) uint amountToWithdraw = userBalances[msg.sender];
(5) if (amountToWithdraw > 0) {
(6) msg.sender.call(userBalances[msg.sender]);
(7) userBalances[msg.sender] = 0;
(8) }
(9) }
(9) ...
(10) }

(1) contract AttackerContract {
(2) function () {
(3) Wallet wallet;
(4) wallet.withdrawBalance();
(5) }
(6) }

Fig. 2: Same-function reentrancy attack.

words, only a restricted set of approved participants have the
right to validate transactions. This restricted model provides
better privacy, scalability and fine grained access control over
users and their data. Hence, most private blockchains for
financial institutions and other enterprises follow this model.
Permissioned blockchains do not typically use proof-based
mining to reach a consensus since all the actors are known;
instead they use consensus algorithms such as RAFT [71],
Paxos [65] or PBFT [57] to achieve higher network throughput.

III. MOTIVATION

We describe the broad classes of correctness and fairness
issues in smart contracts. We also describe potential attacks
due to correctness bugs that can be exploited to gain financial
benefits. None of the attacks discussed exploit any blockchain
or Solidity vulnerabilities or compiler implementation bugs.

A. Incorrect Contracts

An incorrect contract uses constructs or programming
paradigms that are not well understood in the context of the
blockchain platform, resulting in a loss of money.

(I) REENTRANCY. A function is reentrant if it can be
interrupted while in the midst of its execution, and safely
re-invoked even before its previous invocations complete
execution. However, Solidity does not support concurrency,
nor are there any interrupts that can halt a function execution.
In spite of these safeguards, Solidity allows multiple parallel
external invocations, which can invoke the same function using
the call family of constructs, i.e., call, callcode and
delegatecall 2. If an externally invokable function does not
correctly manage the global state, it will be susceptible to a
same function reentrancy attack, such as TheDAO bug [1].
Reentrancy attacks can also happen if a contract’s global state
is not correctly managed across invocations of two different
functions that operate upon the same global state. This bug is
called cross-function race condition [8].

While both call and send can be used for transfer of
Ether 3, send cannot cause reentrancy because send limits
the fallback function to 2300 gas, which neither allows any

2Without loss of generality, we use call to refer to these constructs.
3Ether is Ethereum’s virtual currency. Gas is the execution fee for every

operation made on Ethereum.

(1) if(gameHasEnded && !prizePaidOut) {
(2) winner.send(1000); // send a prize to the winner
(3) prizePaidOut = True;
(4) }

Fig. 3: Unchecked send [46].

(1) for (uint i=0; i < investors.length; i++) {
(2) if (investors[i].invested == min investment) {
(2) payout = investors[i].payout;
(3) if (!(investors[i].address.send(payout)))
(4) throw;
(5) investors[i] = newInvestor;
(6) }
(7) }

Fig. 4: Failed send [38].

storage write nor function calls [6], [15]. Oyente [68], however,
considers the CALL bytecode to trigger its check for reentrancy.
Since, both send and call map to the same CALL bytecode,
Oyente generates several false alarms for reentrancy.

ATTACK. Fig. 2 shows a snippet of this vulnerability. The
attacker invokes the fallback function 4 transferring control
to the Wallet’s withdrawBalance function that uses the
call construct to send Ether to the caller, thereby invoking
the attacker’s fallback function again. This repeated invocation
siphons off Ether from the wallet’s balance. This attack can
be mitigated by swapping lines 6 and 7.

(II) UNCHECKED SEND . Since Solidity allows only 2300 gas
upon a send call, a computation-heavy fallback function at
the receiving contract will cause the invoking send to fail.
Contracts that do not correctly handle such failed invocations
and allow modifications to the global state following the failed
send call, may incorrectly lead to loss of Ether [46].

ATTACK. Consider the example in Fig. 3. The send method
can fail, in which case the winner does not get the money, but
prizePaidOut is set to True. Thus, the condition in line 1 is
always False and the real winner can never claim the prize.

(III) FAILED SEND . Best practices [16] suggest executing a
throw upon a failed send, in order to revert the transaction.
However, this paradigm can also put contracts at risk.

ATTACK. Consider Fig. 4, which describes a DAO that has
a certain number of investors, and is at full capacity. If a
new investor comes along and offers more money than the
current smallest investor, the DAO will pay the dividend to
the smallest, and put the new one in, increasing its capital
stake. However, an adversarial wallet with a fallback function
that takes more than 2300 gas to run, can lock this function
by merely investing enough to become the smallest investor.
When the adversarial wallet is next due to be booted off,
the contract will fail while returning the money and throw,
reverting all changes. This causes the wallet to still be a part
of the investors, thereby causing loss of money to the DAO.

(IV) INTEGER OVERFLOW/UNDERFLOW. Smart contracts
primarily operate upon arithmetic operations, such as iterating
over an array or computing balance amounts to send to a
participant. However, since Solidity is strongly typed, implicit
extending of signed or unsigned integers (e.g., from 8 byte
int to 16 byte int) to store the result is not allowed,

4An anonymous function which is invoked if no matching method is found.

3

Unchecked 

send

(1) uint payout = balance/participants.length;
(2) for (var i = 0; i < participants.length; i++)
(3) participants[i].send(payout);

Fig. 5: Integer overflow [7].

(1) contract UserWallet {
(2) function transfer(address dest, uint amount) {
(3) if (tx.origin != owner) { throw; }
(4) dest.send(amount);
(5) }
(6) }

(1) contract AttackWallet {
(2) function() {
(3) UserWallet w = UserWallet(userWalletAddr);
(4) w.transfer(thiefStorageAddr, msg.sender.balance);
(5) }
(6) }

Fig. 6: tx.origin bug [45].

thereby causing all arithmetic operations to be susceptible to
overflow/underflow. There are over 20 different scenarios that
require careful handling of integer operations [20].

ATTACK. Fig. 5 highlights the severity of the problem.
Specifically, the type of i will be uint8, because this is the
smallest type that is available to hold the value 0. If there
are more than 255 participants, then at i=255, i++ will wrap
around and return to 0. This will cause the payout to be sent
to only the first 255 participants. An attacker can fill up these
spots and gain payouts at the expense of other investors.

(V) TRANSACTION STATE DEPENDENCE. Contract writers
can utilize transaction state variables, such as tx.origin
and tx.gasprice, for managing control flow within a smart
contract. Since tx.gasprice is fixed and is published upfront
to the miner, it cannot be exploited for profit. However, use
of tx.origin for detecting the contract caller can make the
contract vulnerable. For example, if we have a chain of calls,
msg.sender points to the caller of the last function in the
call chain. Solidity’s tx.origin attribute allows a contract to
check the address that originally initiated the call chain, and
not just the last function call [35], [45].

ATTACK. Fig. 6 lists a snippet of code highlighting the bug.
UserWallet is the contract that a user uses to dispense money,
while the attacker deploys the AttackWallet contract. The
attack requires the user to invoke the AttackWallet, which is
possible with some social engineering or phishing techniques.
When the AttackWallet instantiates UserWallet and
invokes transfer, the tx.origin check at line 3 fails, since
the originator of the call chain is the owner. If tx.origin
were replaced by msg.sender, the check would succeed, and
prevent the malicious contract from siphoning off money.

B. Unfair Contracts

We found several examples of syntactically correct
contracts that do not implement the desired logic. Additionally,
we also found examples of logically correct contracts that are
unfair due to the subtleties involved in multi-party interaction.

(I) ABSENCE OF LOGIC. Access to sensitive resources and
APIs must be guarded. For example, the selfdestruct is a
sensitive call that is used to kill a contract and send its balance

(1) contract Wallet {
(2) uint256 balance;

... // initialize balance
(3) function checkAndPay(bytes32 sol,

address dest, uint amt) {
(4) balance -= amt;
(5) if (<solution != correct>) { throw; }
(6) dest.send(amt);
(7) }
(8) }

Fig. 7: Unchecked resources.

(1) while (balance >
persons[payoutCursor Id ].deposit/100*115) {

(2) payout = persons[payoutCursor Id ].deposit/100*115;
(3) persons[payoutCursor Id].EtherAddress.send(payout);
(4) balance -= payout;
(5) payoutCursor Id ++;
(6) }

Fig. 8: Variable mixup [47].

to a designated address. Thus, this call should be preceded
by a check that only the owner of the contract is allowed to
kill it. However, we observed that several contracts that used
selfdestruct did not have this check, potentially allowing
an adversary to receive money and kill the contract.

Consider another example as shown in Fig. 7. The contract
Wallet defines a function checkAndPay that takes in a
solution to a puzzle, a destination address, and an amount
to send to that address, if the solution is correct. It also
decrements the balance from the owner’s account. If the
balance in the wallet is less than the amount to be sent, then
the owner gets the solution to his puzzle and not pay anything
because send will fail. Thus, from the perspective of the
solution provider, this contract is unfair. The problem can be
easily remedied if there were appropriate checks before every
write to a shared resource. For example, the contract writer can
check if the the balance is less than the amount before line 4
and throw, thereby reverting the entire transaction and not
accessing the solution. In general, contract writers can adhere
to the following 3 step rule: check prerequisites, update state
variables, and perform actions.

(II) INCORRECT LOGIC. There are many syntactically legal
ways to achieve semantically unfair behavior. While there are
several real-world examples for this class, in the interest of
space we briefly describe four representative bugs.

• Consider the example in Fig. 8. Notice that two similar
variables, payoutCursor Id and payoutCursor Id are
initialized to 0. The first one gets incremented, but the payouts
go to the second one (see line 2), which stays at zero. Hence,
the contract is not actually fair: the deposits of all investors
go to the 0th participant, possibly the person who created the
scheme, and everyone else gets nothing.
• HackersGold, another popular contract, recently had a bug
discovered [23] where the transferFrom function did not
correctly increment the balance to be transferred to the
recipient. The bug involved a typographical error where += was
coded as =+, resulting in no increment in balance to be sent to
the receiver. We found 15 unique contracts in our data set that
include the same transferFrom functionality and hold over
$35, 000 worth of Ether with over 6500 transactions executed
between them. We continue to see several transactions even
months after the issue was advertised.
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Incorrect 
logic

from “ZEUS: Analyzing Safety of Smart Contracts” Kalra et al.

(1) uint payout = balance/participants.length;
(2) for (var i = 0; i < participants.length; i++)
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Fig. 5: Integer overflow [7].

(1) contract UserWallet {
(2) function transfer(address dest, uint amount) {
(3) if (tx.origin != owner) { throw; }
(4) dest.send(amount);
(5) }
(6) }

(1) contract AttackWallet {
(2) function() {
(3) UserWallet w = UserWallet(userWalletAddr);
(4) w.transfer(thiefStorageAddr, msg.sender.balance);
(5) }
(6) }

Fig. 6: tx.origin bug [45].

thereby causing all arithmetic operations to be susceptible to
overflow/underflow. There are over 20 different scenarios that
require careful handling of integer operations [20].

ATTACK. Fig. 5 highlights the severity of the problem.
Specifically, the type of i will be uint8, because this is the
smallest type that is available to hold the value 0. If there
are more than 255 participants, then at i=255, i++ will wrap
around and return to 0. This will cause the payout to be sent
to only the first 255 participants. An attacker can fill up these
spots and gain payouts at the expense of other investors.

(V) TRANSACTION STATE DEPENDENCE. Contract writers
can utilize transaction state variables, such as tx.origin
and tx.gasprice, for managing control flow within a smart
contract. Since tx.gasprice is fixed and is published upfront
to the miner, it cannot be exploited for profit. However, use
of tx.origin for detecting the contract caller can make the
contract vulnerable. For example, if we have a chain of calls,
msg.sender points to the caller of the last function in the
call chain. Solidity’s tx.origin attribute allows a contract to
check the address that originally initiated the call chain, and
not just the last function call [35], [45].

ATTACK. Fig. 6 lists a snippet of code highlighting the bug.
UserWallet is the contract that a user uses to dispense money,
while the attacker deploys the AttackWallet contract. The
attack requires the user to invoke the AttackWallet, which is
possible with some social engineering or phishing techniques.
When the AttackWallet instantiates UserWallet and
invokes transfer, the tx.origin check at line 3 fails, since
the originator of the call chain is the owner. If tx.origin
were replaced by msg.sender, the check would succeed, and
prevent the malicious contract from siphoning off money.

B. Unfair Contracts

We found several examples of syntactically correct
contracts that do not implement the desired logic. Additionally,
we also found examples of logically correct contracts that are
unfair due to the subtleties involved in multi-party interaction.

(I) ABSENCE OF LOGIC. Access to sensitive resources and
APIs must be guarded. For example, the selfdestruct is a
sensitive call that is used to kill a contract and send its balance

(1) contract Wallet {
(2) uint256 balance;

... // initialize balance
(3) function checkAndPay(bytes32 sol,

address dest, uint amt) {
(4) balance -= amt;
(5) if (<solution != correct>) { throw; }
(6) dest.send(amt);
(7) }
(8) }

Fig. 7: Unchecked resources.

(1) while (balance >
persons[payoutCursor Id ].deposit/100*115) {

(2) payout = persons[payoutCursor Id ].deposit/100*115;
(3) persons[payoutCursor Id].EtherAddress.send(payout);
(4) balance -= payout;
(5) payoutCursor Id ++;
(6) }

Fig. 8: Variable mixup [47].

to a designated address. Thus, this call should be preceded
by a check that only the owner of the contract is allowed to
kill it. However, we observed that several contracts that used
selfdestruct did not have this check, potentially allowing
an adversary to receive money and kill the contract.

Consider another example as shown in Fig. 7. The contract
Wallet defines a function checkAndPay that takes in a
solution to a puzzle, a destination address, and an amount
to send to that address, if the solution is correct. It also
decrements the balance from the owner’s account. If the
balance in the wallet is less than the amount to be sent, then
the owner gets the solution to his puzzle and not pay anything
because send will fail. Thus, from the perspective of the
solution provider, this contract is unfair. The problem can be
easily remedied if there were appropriate checks before every
write to a shared resource. For example, the contract writer can
check if the the balance is less than the amount before line 4
and throw, thereby reverting the entire transaction and not
accessing the solution. In general, contract writers can adhere
to the following 3 step rule: check prerequisites, update state
variables, and perform actions.

(II) INCORRECT LOGIC. There are many syntactically legal
ways to achieve semantically unfair behavior. While there are
several real-world examples for this class, in the interest of
space we briefly describe four representative bugs.

• Consider the example in Fig. 8. Notice that two similar
variables, payoutCursor Id and payoutCursor Id are
initialized to 0. The first one gets incremented, but the payouts
go to the second one (see line 2), which stays at zero. Hence,
the contract is not actually fair: the deposits of all investors
go to the 0th participant, possibly the person who created the
scheme, and everyone else gets nothing.
• HackersGold, another popular contract, recently had a bug
discovered [23] where the transferFrom function did not
correctly increment the balance to be transferred to the
recipient. The bug involved a typographical error where += was
coded as =+, resulting in no increment in balance to be sent to
the receiver. We found 15 unique contracts in our data set that
include the same transferFrom functionality and hold over
$35, 000 worth of Ether with over 6500 transactions executed
between them. We continue to see several transactions even
months after the issue was advertised.
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Smart contract의 안전성이란?

Smart
contracts

Correct? Fair?

Correctness와 fairness의 기준은 무엇인가?

Token economy

Decentralized governance 구조와 
Incentive mechanism으로 정의

무엇에
대하여?

Smart contract가 이것을 위배하는가?



우선 지금 어떠한가?



modifier onlyFromWallet {
    require(msg.sender != walletAddress);
    _;
} 



CVE-2018-14576

  function mintTokens(address _to, uint256 _amount) {         
    if (msg.sender != icoContractAddress) throw;            
    if (restrictedAddresses[_to]) throw;                    
    if (balances[_to] + _amount < balances[_to]) throw;     

    balances[_to] += _amount;                               
    supply += _amount;                                      
    Mint(_to, _amount);                                     
    Transfer(0x0, _to, _amount);                            
  }   



CVE-2018-14084

function sell(uint256 amount) public {
        require(this.balance >= amount * sellPrice);      
        _transfer(msg.sender, this, amount);              
        msg.sender.transfer(amount * sellPrice);          
}

  

    function transfer(address _to, uint256 _value) public {
        _transfer(msg.sender, _to, _value);
    }



(https://blog.peckshield.com/2018/05/03/ownerAnyone/)

CVE-2018-10705



(Contract: 0x2f069a1D7A052052458e8b5511E91221EB337c52)

Randomness?

  function StartGame(uint256 _number) public payable 
  {
      if(msg.value >= minBet && _number <= 10)
      {
          GameHistory gameHistory;
          gameHistory.player = msg.sender;
          gameHistory.number = _number;
          log.push(gameHistory);
          
          if (_number == randomNumber) 
          {
              msg.sender.transfer(this.balance);
          }
          
          randomNumber = uint256( keccak256(now) ) % 10 + 1;
          prizeFund = this.balance;
      }
  }

contract NumberLottery 
{
  uint256 private  randomNumber
          = uint256( keccak256(now) ) % 10 + 1;
  uint256 public prizeFund;
  uint256 public minBet = 0.1 ether;
  address owner = msg.sender;

  struct GameHistory 
  {
    address player;
    uint256 number;
  }



Fairness?

for(uint i = 0 ; i < NO_OF_SEATS_BID; i++){
 // Only 1-14 for sale
 assert( 0 < seats[i]  && seats[i] < 15);
 var seatNumber = uint8(seats[i]);

 var valueBid = bids[i];

 var existingSeat = table[seatNumber];
 // Min increase 1 ether
 if (existingSeat.cost + 1 ether <= valueBid){
 //Bidder takes the seat
 existingSeat.owner = bidder; 
 existingSeat.cost = valueBid;
 }
 // else, money lost - medieval rules here
}
//Register how much the creator should have
creator_balance += 100 * bids.length;
// All money is stored in this contract until payout time

        # '0x69f30401' for function 'bid(address,uint256[],uint256[])'
        sig = "69f30401"

        args = [ sig, #method
         "00000000000000000000000000000000000000000000000000000000cafebabe", #bidder
         "0000000000000000000000000000000000000000000000000000000000000060", #datapart_1_param
         "00000000000000000000000000000000000000000000000000000000000000A0", #datapart_2_param
         "F000000000000000000000000000000000000000000000000000000000000001", #len_of_array_1
         "0000000000000000000000000000000000000000000000000000000000000003", #seat 3 #array_1
         "F000000000000000000000000000000000000000000000000000000000000001", #len_of_array_2
         "0000000000000000000000000000000000000000000000000de0b6b3a7640000", # 1 ether #array_2
        ]
        data = "".join(args)



무엇인가 
근본적으로 
잘못되었다.

무엇인가 
근본적으로 
잘못되었다.



Problem shapes

(http://matt.might.net/articles/problem-shapes/)



Problem shapes

(http://matt.might.net/articles/problem-shapes/)
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무엇을 어디에서 부터 고민하는가?



Software security에서의 (기존) 접근 방법
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Smart contract에 대한 현재 접근 방법
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기존 방식에서의 변화

프로그램의
크기가 작다.
(작아야 
한다)

실행환경이
생소하다.

Smart
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기존 방식의 연장선
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(자동화된) 분석의 시작

EVM
Bytecode

Dis-
assemble

Control
Flow

Recovery

중간
언어

Linear sweep / 
Recursive traversal

1 contract Stateful{
2 bool vulnerable = false;

3 function makeVulnerable(){
4 vulnerable = true;

5 }
6 function exploit(address attacker){
7 require(vulnerable);

8 attacker.transfer(this.balance);

9 }
10 }

Figure 3: Stateful contract

its corresponding CALL instruction—cannot be reached
due to the preceding require. Only after a call to
makeVulnerable the vulnerable variable is set and a
vulnerable state is reached. Yet, intuitively, this contract
is vulnerable. We thus have to extend our definition to
also include a notion of state that captures modifications
made to a contract’s storage.

The only instruction that allows to modify storage is
SSTORE. A transaction that performs a storage modifica-
tion therefore always executes a SSTORE instruction. We
can therefore define state-changing transactions.

Definition 3 (State Changing Path). A state changing
path is a potential execution trace that contains at least
one SSTORE instruction.

Definition 4 (State Changing Transaction). A transac-
tion is state changing if its execution trace is a state
changing path.

Combining this with Definition 2 allows us to give the
following definition

Definition 5 (Vulnerable). A contract is vulnerable if
there exists a (possibly empty) sequence of state chang-
ing transactions that lead to a vulnerable state.

From this it immediately follows that a successful ex-
ploit always consists of a sequence of state changing
transactions followed by a critical transaction.

4 Automatic Exploitation

In this section we present TEETHER, our tool for auto-
matic exploit generation for smart contracts.

4.1 Overview
Figure 4 shows the overall architecture of TEETHER. In
a first step, the CFG-recovery module disassembles the
EVM bytecode and reconstructs a control flow graph
(CFG). Next, this CFG is scanned for critical instructions

CFG recovery

EVM bytecode

critical instructions

path generation

constraint generation

exploit generation

exploit

Figure 4: Architecture of TEETHER

0:
   0: 34 CALLVALUE 
   1: 60 PUSH1 0d
   3: 57 JUMPI 

4:
   4: 60 PUSH1 0b
   6: 60 PUSH1 00
   8: 60 PUSH1 17
   a: 56 JUMP 

0

d:
   d: 5b JUMPDEST 
   e: 60 PUSH1 15
  10: 60 PUSH1 ff
  12: 60 PUSH1 17
  14: 56 JUMP 

0

17:
  17: 5b JUMPDEST 
  18: 50 POP 
  19: 56 JUMP 

4

b:
   b: 5b JUMPDEST 
   c: 00 STOP 

d

15:
  15: 5b JUMPDEST 
  16: 00 STOP 

4 d

Figure 5: An example CFG with dependent edges

and for state changing instructions. The path generation
module explores paths from the root of the CFG lead-
ing to these instructions, from which the constraint gen-
eration module creates a set of path constraints through
symbolic execution. Finally, the exploit generation mod-
ule solves the combined constraints of critical paths and
state changing paths to produce an exploit.

4.2 CFG Recovery
Reconstructing a control flow graph from EVM byte-
code is a non-trivial task. This is due to the fact that the
EVM only provides control flow instructions with indi-
rect jumps. Both the conditional JUMPI and the uncondi-
tional JUMP read the jump target from the top-most stack
element. While the jump target can be trivially inferred

Heuristics /
Concrete execution /
Abstract interpretation

Abs.
복원

- Stack code의 동작을 explicit하게 
  보기 위하여 사용된다. 

 

PUSH1 01
PUSH1 02
ADD v1 = 01

v2 = 02
v3 = v1 + v2

v3 = 01+02

- 패턴 매칭을 고려해서 되도록 
  간단한 syntax로 정의한다. 

- 일반적으로는 3 address code 이지만, 
   필요에 따라 nesting을 적용할 수 있다.  
   (Multi-level IR)
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EVM Code Analysis Tool Evaluation
This page evaluates the precision of EVM code analysis tools on a set of micro-benchmarks. 
Please contribute new benchmarks and submit issues on the Github repo. 

Results

Green means the tool gives the expected result, and red means it did not. 
Click on the benchmark name to see its Solidity code. 
See the terminology section for definitions. 

Bug Type Benchmark MythrilPip 
0.17.12

ManticoreGit 
2018-05-18 18:01:09

OyentePip 
0.2.7

Integer Overflow minimal True Positive True Positive False Negative

Integer Overflow add True Positive True Positive Unsupported

Integer Overflow mul True Positive True Positive Unsupported

Integer Overflow path 1 True Negative True Negative Unsupported

Integer Overflow benign 1 True Negative False Positive Unsupported

Integer Overflow benign 2 False Positive Unsupported Unsupported

Integer Overflow multi-tx 1 True Positive False Negative Unsupported

Integer Overflow multi-tx 2 False Positive Unsupported Unsupported

Integer Overflow multi-tx 3 True Positive False Negative Unsupported

Integer Overflow storage inv False Positive True Negative Unsupported

Integer Overflow symbolic
storage 1 True Positive True Positive Unsupported

Integer Overflow symbolic
storage 2 True Negative True Negative Unsupported

Integer Overflow attribute store False Positive Analysis Failed Unsupported

Integer Overflow mapping
string key False Positive Analysis Failed Unsupported

Integer Overflow fixed storage
packing True Negative True Negative Unsupported

bytes

2018/08/20, 9)44 AM

Page 2 of 38https://consensys.net/diligence/evm-analyzer-benchmark-suite/

Integer Overflow parameter False Positive Analysis Failed Unsupported

Integer Overflow static array True Negative True Negative Unsupported

Integer Overflow mapping
words True Negative True Negative Unsupported

Integer Overflow mapping
structs 1 True Negative True Negative Unsupported

Integer Overflow mapping
structs 2 True Negative False Positive Unsupported

Integer Overflow mapping static
arr True Negative True Negative Unsupported

Integer Overflow dynamic array False Positive True Negative Unsupported

Callback Effect-
Free dao True Positive False Negative True Positive

Callback Effect-
Free dao fixed False Positive Unsupported True Negative

Callback Effect-
Free effect-free False Positive Unsupported True Negative

Assertion minimal True Positive True Positive True Positive

Assertion constructor False Negative Analysis Failed False Negative

Assertion symbolic True Positive True Positive True Positive

Assertion require True Negative True Negative True Negative

Assertion multi tx 1 False Positive Analysis Failed False Positive

Assertion multi tx 2 Unsupported Analysis Failed Unsupported

Eth Tx-Order
Dependence minimal 1 True Positive False Negative True Positive

Eth Tx-Order
Dependence minimal 2 False Positive Unsupported True Negative

Eth Tx-Order
Dependence multi tx 1 False Positive Unsupported False Positive

Eth Tx-Order
Dependence puzzle True Positive Analysis Failed True Positive

Terminology

Term Description

https://consensys.net/diligence/evm-analyzer-benchmark-suite/
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Bytecode
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Decompiled 
code
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Pattern

EVM code
Matched pattern

00: 60 04
02: 35 60
04: 08 56
06: 5B 00
08: 5B 60
0A: 00 56
0C: 60 00
0E: 55 56

// entry
L1 a = 0x04
L2 b = dataload(a)
L3 ABI_9DA8(b)
L4 stop()

// method
   ABI_9DA8(b) {
L5  c = 0x00
    // write owner
L6  sstore(c, b);
   }

00: push 0x04
02: dataload
03: push 08
05: jump
06: jumpdest
07: stop
08: jumpdest
09: push 0x00
0B: sload
0C: push 0x00
0E: sstore
0F: jump

... !MayDepOn(c, Caller) 
&& !MayDepOn(6, Caller)

Restricted write 
violation pattern

MustFollow(L2, L1)
VarTag(a, const)
MayDepOn(b, dataload)  
Eq(c, 0x00)

Parsed code Decompiled code

Semantic facts

...

// entry
L1 a = 0x04
L2 b = dataload(a)
L3 ABI_9DA8(b)
L4 stop()

// method
   ABI_9DA8(b) {
L5  c = 0x00
    // write owner
L6  sstore(c, b);
   }

(1) (2)

(3)

(4)

Figure 5: High-level �ow illustrating how S������� �nds the unrestricted write to the owner �eld in the contract shown in
Fig. 3. The input and output are highlighted in green and, respectively, blue , while gray boxes represent intermediate
analysis artifacts. S������� proceeds in four steps: (1) it parses the EVM code, (2) it decompiles the EVM code into a static-
single assignment form, (3) it infers semantics facts about the contract, and (4) it matches the violation pattern of the restricted
write property on the sstore instruction (in red ) which writes to the owner �eld.

the amount of ether extracted from the contract is zero. The con-
junction of these two facts implies that ether can be locked in the
contract.

2.3 Analysis via Semantic Fact Checking
The above examples illustrate that security issues which appear in
smart contracts are often complex (hyper-properties that require
at least two executions to state formally). Nonetheless, we demon-
strate that they can be often successfully proved or disproved using
semantic facts inferred from the code. In Section 4 we describe a
concise set of semantic facts that capture a range of security proper-
ties, including restricted ether transfers, restricted writes to storage,
no state-changes after calls, transaction-ordering dependences, and
others. Then, in Section 5, we present compliance and violation
patterns used to prove and, respectively, �nd violations of these
security properties.

3 THE SECURIFY SYSTEM
We present a description of the operation of the S������� system.

High-level Flow. The input to S������� is the EVM bytecode of
a contract and a set of security patterns, speci�ed in a designated
domain-speci�c language (DSL). There are two kinds of patterns:
compliance and violation patterns, which capture su�cient condi-
tions to ensure that a contract satis�es and, respectively, violates a
speci�c security property. In Fig. 5, we illustrate how S������� de-
tects the unrestricted write to the owner �eld in the wallet contract
shown in Fig. 3. For simplicity, we only show part of the EVM byte-
code, which is su�cient to illustrate the vulnerability. S�������’s
analysis consists of the following four steps.

Steps 1 and 2: Decompiling EVM bytecode. S������� �rst
transforms the EVM bytecode provided as input into a stackless
representation in static-single assignment form (SSA). For example,
for the stack expression push 0x04, S������� introduces a local
variable a and an assignment statement a = 0x04. In addition to
removing the stack, S������� identi�es methods. For example, the
method ABI_9DA8 shown in Fig. 5 corresponds to the initOwner

method of the wallet contract shown in Fig. 3. After decompila-
tion, S������� performs partial evaluation to resolve memory and
storage o�sets, jump destinations, all of which are important for pre-
cisely analyzing the code statically. We describe these optimizations
in Section 6.

Step 3: Inferring Semantic Facts. S������� analyzes the con-
tract to infer semantic facts, including data- and control-�ow depen-
dencies, which hold over all behaviors of the contract. For example,
the fact MayDepOn(b,dataload) shown in Fig. 5 captures that the
value of variable b may depend on the value returned by the in-
struction dataload. Further, the fact VarTag(a, const) captures that
variable a is a constant.

S�������’s derivation of semantic facts is speci�ed declaratively
in strati�ed Datalog and is fully automated using existing scalable
engines [6]. Key bene�ts of the declarative approach are that: (i)
inference rules concisely capture abstract reasoning about di�erent
components (e.g., contract storage), (ii) more facts and inference
rules can be easily added, and (iii) inference rules are speci�ed in a
modular way (e.g., memory analysis is speci�ed independently of
contract storage analysis). We list the semantic facts that S�������
derives along with the inference rules in Section 4.

Step 4: Checking Security Patterns. S������� allows security
experts to express compliance and violation security patterns in a
specialized domain-speci�c language (DSL). Our DSL is a fragment
of logical formulas over the semantic facts inferred by S�������. To
detect the vulnerability in Fig. 3, S������� matches the following
violation pattern on the sstore(c,b) instruction:

!MayDepOn(c,Caller) && !MayDepOn(6,Caller)

Here, c is the �eld o�set of the owner and 6 is the label of SStore.
These two facts imply that the o�set as well as the execution of the
SStore instruction do not depend on the identity of the transaction
sender (returned by Caller). Therefore, if the SStore instruction is
reachable for one user, then it is reachable for all other users.

S�������’s DSL is important for extensibility: adding new secu-
rity patterns amounts to specifying them in this DSL. To illustrate
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